EDUCATION

2016-Present	Ph.D. Candidate in Robotics, École Polytechnique Fèdèrale de Lausanne (EPFL), Lausanne Switzerland
2011	M.S.E. Mechanical Engineering: Control Theory, University of Michigan, Ann Arbor, MI, USA
2009	S.B. Mechanical Engineering: Robotics, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

EXPERIENCE

2016-Present	Graduate Student Proposed thesis investigates soft robotic technolo assistive devices. Conceived, implemented and te integration concepts with complex, multi-DoF soft	ested new fabrication, control, and system
2015	Robotics Mechanical Engineer Conceptual and detailed design and development and healthcare industries. Includes telepresence in nursing.	
2011-2015	Research Engineer Intelligent Prosthetic Systems Project Lead handling scientifically motivated design, fabrication, assembly and testing of advanced prosthetic devices under research. Includes novel mechanisms, low-power actuation, microcontroller and sensor integration (Inertial Measurement Units), and management of human-subject testing protocols and analysis.	
2011-2015	search Engineering Assistant University of Michigan HBCL Providing laboratory management, engineering support for graduate students in university Human Biomechanics and Control Laboratory.	
2009-2012	Contract Consulting MA, MI Design and fabrication services for mechanical/electrical hardware prototypes. Completed projects include: windmill, tattoo machine, robotic positioning systems, marine mammal research testing apparatus, mechatronic children's museum exhibit	
2011	Robotics Engineer Project Lead and design engineer for various DOI	Vishwa Robotics D SBIR contract engineering projects.
2010-2011	Graduate Research Investigation and design of a pneumatic binary-ac manipulator-arm.	University of Michigan GRRC ctuation hyper-redundant robotic
2010	Air Force Research Lab Internship Studied, designed, and modeled deployable syste	Kirtland Air Force Base ems for CubeSat standard micro satellites.
2009	Research & Development Internship Designed, modeled, fabricated, and tested hardwa prototype Micro Air Vehicles (MAV) and autonomo demonstration.	

2008	Undergraduate ResearchMIT D'Arbeloff LaboratoryDesigned and built a heavy-duty, 2-axis, dual gantry system to position 60 lb payloads throughout a large workspace with 0.01 inch accuracy. Independent management of design, project planning, requisition, fabrication, and assembly.		
2008	Undergraduate Research MIT D'Arbeloff Laboratory Designed, built, and tested alpha-prototype robotic platform to investigate the feasibility of active pneumatic suction cup adhesion to aluminum aircraft "skin" for robotic assembly research.		
TEACHING			
2016-2018	Graduate Teaching Assistant	EPFL / RRL Mechanical Engineering	
		assistive technology. Specific topics include soft urriculum, taught lectures, designed and ran	
2016	Graduate Teaching Assistant	EPFL / RRL Mechanical Engineering	
	Assisted undergraduate course "ME-302: Mechanical Design Principles". Staffed weekly homework assistance, taught exam review session, and graded assignments and exams.		
2007-2008	Engineering Design Teacher	MIT Edgerton Center / TEC	
SKILLS	Taught at MIT and instructed on subjects of dynamics, and machine tool use. Students of robots for competitions, and ridable machine during multiple semesters, and month long	designed and fabricated remote controlled es (go-kart, DIY-Segway). Saturday program	
	 Mechanical Design Soft Materials Robot Fabrication Modeling - Solidworks, Alibre Manufacturing - Bridgeport, Smithy, Hardinge, Colchester, Makerbot, Epilog Materials Testing - Instron 	 Programming - C/C++, Matlab, Java, VBA, Scheme, Processing CNC Programming - MasterCAM, OMAX, AlibreCAM PCB, Circuit Fabrication Concept Sketch Drawing 	
ACTIVITIES			
	 FIRST Robotics Team mentor, former student participant, 7 years Singing Men's college a cappella group, soloist, MITLogs.com Art Wood Carving, Painting, Drawing (various media) Rock Climbing/Bouldering, Running, Hiking, Tough Muddering? Any excuse to be outside 	 Home Renovation Demolition and Reconstruction of first owned house (3 years) Dreaming and Doing at Hacker/Maker- spaces Hobby Engineering Designing and building things for fun 	
GENERAL IN	TEREST KEYWORDS		
	Novel actuators	Decentralized control	

Soft robotic systems Heuristic design Dynamic walking robots Decentralized control Modular robotics Smart materials Bioinspired machines

PUBLICATIONS

<u>M. A. Robertson</u>, O. Kara, J. Paik, Soft pneumatic actuator driven origami inspired modular robotic "pneumagami", in **International Journal of Robotics Research**, In review, Submitted Jan. 2019.

<u>M. A. Robertson</u>, M. Murakami, W. Felt, J. Paik, A Compact Modular Soft Surface with Reconfigurable Shape and Stiffness, in **IEEE Transactions on Mechatronics.** vol. 24, no. 1, pp. 16-24, Feb. 2019.

<u>M. A. Robertson</u>, F. Efremov, J. Paik. RoboScallop: Bivalve inspired swimming robot. **IEEE Robotics and Automation Letters**, doi: 10.1109/LRA.2019.2897144, Feb. 2019

<u>M. A. Robertson</u> and J. Paik. New soft robots really suck: Vacuum-powered systems empower diverse capabilities, in **Science Robotics**, vol. 2, num. 9, p. eaan6357, 2017.

<u>M. A. Robertson</u>, H. Sadeghi, J. M. Florez and J. Paik. Soft Pneumatic Actuator Fascicles for High Force and Reliability, in **Soft Robotics**, vol. 4, num. 1, p. 23-32, 2017.5

G. Agarwal, <u>M. A. Robertson</u>, H. A. Sonar and J. Paik. Design and Computational Modeling of a Modular, Compliant Robotic Assembly for Human Lumbar Unit and Spinal Cord Assistance, in **Scientific Reports**, vol. 7, p. 14391, 2017.

S. Hauser, <u>M. A. Robertson</u>, A. J. Ijspeert, J. Paik. JammJoint: A Variable Stiffness Device Based on Granular Jamming for Wearable Joint Support. **IEEE Robotics and Automation Letters**. PP. 1-1. 10.1109/LRA.2017.2655109. 2017.

CONFERENCES

<u>M. A. Robertson</u>, F. Efremov, J. Paik. RoboScallop: A bivalve inspired swimming robot. 2019 IEEE International Conference on Robotics and Automation (ICRA). Montreal, Canada, May 20-24, 2019.

<u>M. A. Robertson</u>, L. Dejace, S. Lacour, J. Paik. Bi-modal control of vacuum-powered soft pneumatic actuators with embedded liquid metal-based strain sensitive. *2019 IEEE International Conference on Soft Robotics (RoboSoft)*, Seoul, Korea, April 14-18, 2019.

<u>M. A. Robertson</u>, J. Paik. Low-inertia vacuum-powered soft pneumatic actuator coil characterization and design methodology. 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, April 24-28, 2018.

W. Felt, <u>M. A. Robertson</u>, J. Paik. Modeling Vacuum Bellows Soft Pneumatic Actuators with Optimal Mechanical Performance. *2018 IEEE International Conference on Soft Robotics (RoboSoft)*, Livorno, Italy, April 24-28, 2018.

S. Walker, A. Firouzeh, <u>M. Robertson</u>, Y. Menguc, J. Paik. 3D Printed Soft Sensor-Actuator Wearable for Facial Rehabilitation, Initial Work. 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, April 24-28, 2018.

<u>M. A. Robertson</u> and J. Paik. Foam-based Vacuum-powered Soft Pneumatic Actuators (V-SPAs) for safe robots. *Talk at Humanoids Conference Workshop: Can We Build Baymax? Part III*, November 15, 2017.

H. A. Sonar, S. D. Joshi, <u>M. A. Robertson</u> and J. Paik. Interactive soft pneumatic actuator skin. *Presented at IEEE/RSJ International Conference on Intelligent Robots and Systems*, Vancouver, BC, Canada, 2017.

<u>M. A. Robertson</u> and J. Paik. Practical control methods for vacuum driven soft actuator modules. *Talk at IEEE Intl. Conf. on Intelligent Robots and Systems (IROS) 2017,* September 24-28, 2017.

<u>M. A. Robertson</u>, J. Paik, A. Ijspeert and A. Wu. A low-cost, actuated passive dynamic walker kit for accessible research and education. *Talk at Dynamic Walking Conference*, Mariehamn, Finland, 2017.

<u>M. A. Robertson</u> and J. Paik. Trunk postural tracking of assistive soft pneumatic actuator belt. *Presented at Dynamic Walking Conference*, Holly, MI, 2016.

P. G. Adamczyk, <u>M. A. Robertson</u>, and A. D. Kuo. RoboFrog? Explosive Power from Elastic Tendons Without Escapements. *Presented at Dynamic Walking Conference*, Pensacola, FL, 2012.

